Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Infect Public Health ; 15(11): 1279-1286, 2022 10 13.
Article in English | MEDLINE | ID: covidwho-2069349

ABSTRACT

BACKGROUND: Nosocomial outbreaks frequently occurred during the Coronavirus disease 2019 (COVID-19) pandemic; however, sharing experiences on outbreak containment is vital to reduce the related burden in different locations. OBJECTIVES: This article aims at sharing a practical experience on COVID-19 outbreak containment, including contact tracing, screening of target population, testing including molecular analysis, and preventive modalities. It also provides an epidemiological and molecular analysis of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS­CoV­2) infection outbreak in a tertiary care hospital in Saudi Arabia. METHODS: The outbreak occurred in a non-COVID medical ward at a tertiary care hospital in Jeddah, Saudi Arabia, from 22nd March and 15th April 2021. The multidisciplinary outbreak response team performed clinical and epidemiological investigations. Whole-Genome Sequencing (WGS) was implemented on selected isolates for further molecular characterization. RESULTS: A total of eight nurses (20 % of the assigned ward nurses) and six patients (16.2 % of the ward admitted patients at the time of the outbreak) tested positive for the SARS-CoV-2 virus based on PCR testing. The outbreak investigation identified strong evidence of an epidemiologic link between the affected cases. WGS revealed a set of spike mutations and deletions specific to the Alpha variant (B.1.1.7 lineage). All the nurses had mild symptoms, and the fatality among the patients was 50 % (three out of the six patients). CONCLUSIONS: The current nosocomial COVID-19 outbreak, caused by the Alpha variant, revealed multiple breaches in the adherence to the hospital infection control recommended measures. Containment strategies were successful in controlling the outbreak and limiting infection spread. Molecular analysis and genome sequencing are essential tools besides epidemiological investigation to inform appropriate actions, especially with emerging pathogens.

2.
Frontiers in bioengineering and biotechnology ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1998304

ABSTRACT

The pandemic of COVID-19 was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 and it has prompted unprecedented research activities for vaccines, therapeutics, and diagnostics. The real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard method of diagnosis;however, immune-based assays offer cost-effective, deployable, easy-to-read solutions for diagnosis and surveillance. Here, we present the development, optimization, and testing of an enzyme-linked viral immune capture assay (ELVICA). It utilizes the spike antigen as the detected target of the virus and antibody-coated beads to capture the virus and enrich the detection. This method can be readout by luminescent and colorimetric equipment. It can also be visualized by the imaging system, offering a variety of detection approaches. ELVICA showed specificity to SARS-CoV-2-pseudotyped viruses as compared to MERS-CoV-pseudotyped viruses. As compared to RT-PCR, ELVICA showed high compatibility in detecting the virus in patient respiratory samples, especially for samples that are below a Ct value of 32 in RT-PCR. This assay is readily adaptable for detecting other pathogens and serves as a quick and affordable diagnostic tool.

SELECTION OF CITATIONS
SEARCH DETAIL